11 research outputs found

    A generalized risk approach to path inference based on hidden Markov models

    Full text link
    Motivated by the unceasing interest in hidden Markov models (HMMs), this paper re-examines hidden path inference in these models, using primarily a risk-based framework. While the most common maximum a posteriori (MAP), or Viterbi, path estimator and the minimum error, or Posterior Decoder (PD), have long been around, other path estimators, or decoders, have been either only hinted at or applied more recently and in dedicated applications generally unfamiliar to the statistical learning community. Over a decade ago, however, a family of algorithmically defined decoders aiming to hybridize the two standard ones was proposed (Brushe et al., 1998). The present paper gives a careful analysis of this hybridization approach, identifies several problems and issues with it and other previously proposed approaches, and proposes practical resolutions of those. Furthermore, simple modifications of the classical criteria for hidden path recognition are shown to lead to a new class of decoders. Dynamic programming algorithms to compute these decoders in the usual forward-backward manner are presented. A particularly interesting subclass of such estimators can be also viewed as hybrids of the MAP and PD estimators. Similar to previously proposed MAP-PD hybrids, the new class is parameterized by a small number of tunable parameters. Unlike their algorithmic predecessors, the new risk-based decoders are more clearly interpretable, and, most importantly, work "out of the box" in practice, which is demonstrated on some real bioinformatics tasks and data. Some further generalizations and applications are discussed in conclusion.Comment: Section 5: corrected denominators of the scaled beta variables (pp. 27-30), => corrections in claims 1, 3, Prop. 12, bottom of Table 1. Decoder (49), Corol. 14 are generalized to handle 0 probabilities. Notation is more closely aligned with (Bishop, 2006). Details are inserted in eqn-s (43); the positivity assumption in Prop. 11 is explicit. Fixed typing errors in equation (41), Example

    Regularisation, interpolation and visualisation of diffusion tensor images using non-Euclidean statistics.

    Get PDF
    Practical statistical analysis of diffusion tensor images is considered, and we focus primarily on methods that use metrics based on Euclidean distances between powers of diffusion tensors. First we describe a family of anisotropy measures based on a scale invariant power-Euclidean metric, which are useful for visualisation. Some properties of the measures are derived and practical considerations are discussed, with some examples. Second we discuss weighted Procrustes methods for diffusion tensor interpolation and smoothing, and we compare methods based on different metrics on a set of examples as well as analytically. We establish a key relationship between the principal-square-root-Euclidean metric and the size-and-shape Procrustes metric on the space of symmetric positive semi-definite tensors. We explain, both analytically and by experiments, why the size-and-shape Procrustes metric may be preferred in practical tasks of interpolation, extrapolation, and smoothing, especially when observed tensors are degenerate or when a moderate degree of tensor swelling is desirable. Third we introduce regularisation methodology, which is demonstrated to be useful for highlighting features of prior interest and potentially for segmentation. Finally, we compare several metrics in a dataset of human brain diffusion-weighted MRI, and point out similarities between several of the non-Euclidean metrics but important differences with the commonly used Euclidean metric

    Intra-operative spectroscopic assessment of surgical margins during breast conserving surgery

    Get PDF
    Background: In over 20% of breast conserving operations, postoperative pathological assessment of the excised tissue reveals positive margins, requiring additional surgery. Current techniques for intra-operative assessment of tumor margins are insufficient in accuracy or resolution to reliably detect small tumors. There is a distinct need for a fast technique to accurately identify tumors smaller than 1 mm2 in large tissue surfaces within 30 min. Methods: Multi-modal spectral histopathology (MSH), a multimodal imaging technique combining tissue auto-fluorescence and Raman spectroscopy was used to detect microscopic residual tumor at the surface of the excised breast tissue. New algorithms were developed to optimally utilize auto-fluorescence images to guide Raman measurements and achieve the required detection accuracy over large tissue surfaces (up to 4 × 6.5 cm2). Algorithms were trained on 91 breast tissue samples from 65 patients. Results: Independent tests on 121 samples from 107 patients - including 51 fresh, whole excision specimens - detected breast carcinoma on the tissue surface with 95% sensitivity and 82% specificity. One surface of each uncut excision specimen was measured in 12–24 min. The combination of high spatial-resolution auto-fluorescence with specific diagnosis by Raman spectroscopy allows reliable detection even for invasive carcinoma or ductal carcinoma in situ smaller than 1 mm2. Conclusions: This study provides evidence that this multimodal approach could provide an objective tool for intra-operative assessment of breast conserving surgery margins, reducing the risk for unnecessary second operations

    Procrustes analysis of diffusion tensor image processing

    Get PDF
    This article was published in the International Journal of Computer Theory and Engineering (IJCTE)There is an increasing need to develop processing tools for diffusion tensor image data with the consideration of the non-Euclidean nature of the tensor space. In this paper Procrustes analysis, a non-Euclidean shape analysis tool under similarity transformations (rotation, scaling and translation), is proposed to redefine sample statistics of diffusion tensors. A new anisotropy measure Procrustes Anisotropy (PA) is defined with the full ordinary Procrustes analysis. Comparisons are made with other anisotropy measures including Fractional Anisotropy and Geodesic Anisotropy. The partial generalized Procrustes analysis is extended to a weighted generalized Procrustes framework for averaging sample tensors with different fractions of contributions to the mean tensor. Applications of Procrustes methods to diffusion tensor interpolation and smoothing are compared with Euclidean, Log-Euclidean and Riemannian methods

    Modeling natural microimage statistics

    Get PDF
    A large collection of digital images of natural scenes provides a database for analyzing and modeling small scene patches (e.g., 2 x 2) referred to as natural microimages. A pivotal finding is the stability of the empirical microimage distribution across scene samples and with respect to scaling. With a view toward potential applications (e.g. classification, clutter modeling, segmentation), we present a hierarchy of microimage probability models which capture essential local image statistics. Tools from information theory, algebraic geometry and of course statistical hypothesis testing are employed to assess the “match” between candidate models and the empirical distribution. Geometric symmetries play a key role in the model selection process. One central result is that the microimage distribution exhibits reflection and rotation symmetry and is well-represented by a Gibbs law with only pairwise interactions. However, the acceptance of the up-down reflection symmetry hypothesis is borderline and intensity inversion symmetry is rejected. Finally, possible extensions to larger patches via entropy maximization and to patch classification via vector quantization are briefly discussed
    corecore